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Abstract— Unification of classification and regression is a
major challenge in machine learning and has attracted increasing
attentions from researchers. In this article, we present a new idea
for this challenge, where we convert the classification problem
into a regression problem, and then use the methods in regression
to solve the problem in classification. To this end, we leverage
the widely used maximum margin classification algorithm and
its typical representative, support vector machine (SVM). More
specifically, we convert SVM into a piecewise linear regression
task and propose a regression-based SVM (RBSVM) hyperpa-
rameter learning algorithm, where regression methods are used
to solve several key problems in classification, such as learning
of hyperparameters, calculation of prediction probabilities, and
measurement of model uncertainty. To analyze the uncertainty of
the model, we propose a new concept of model entropy, where the
leave-one-out prediction probability of each sample is converted
into entropy, and then used to quantify the uncertainty of the
model. The model entropy is different from the classification
margin, in the sense that it considers the distribution of all
samples, not just the support vectors. Therefore, it can assess the
uncertainty of the model more accurately than the classification
margin. In the case of the same classification margin, the farther
the sample distribution is from the classification hyperplane, the
lower the model entropy. Experiments show that our algorithm
(RBSVM) provides higher prediction accuracy and lower model
uncertainty, when compared with state-of-the-art algorithms,
such as Bayesian hyperparameter search and gradient-based
hyperparameter learning algorithms.

Index Terms— Hyperparameter optimization, maximum mar-
gin classification, regression, support vector machine (SVM).

I. INTRODUCTION

AMONG the classification algorithms, the maximum mar-
gin algorithm is an important type of machine learning

methods [1], which can be used for uncertain data processing
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[2], unsupervised structured prediction [3], multidimensional
classification [4], Bayesian network classifier [5], etc. Its
typical representative is support vector machine (SVM) [6].
SVM is based on the Vapnik–Chervonenkis dimension theory
and obtains the best generalization ability by searching for the
largest classification margin in the feature space [7]. It has a
solid theoretical foundation and is easy to implement, so it
has been successfully applied to a variety of learning tasks
[8], such as medical diagnosis [9], image processing [10], and
thermographic fault diagnosis [11], [12].

SVM has been developed continuously since it was pro-
posed. A variety of new SVM algorithms are emerging to
improve their training speed and promote their applications.
Among them, twin SVM (TWSVM) is particularly prominent
[13]. For binary-classification problems, TWSVM constructs
a hyperplane for each class sample. The sample of each class
is as close as possible to the hyperplane of its class and as
distant as possible from the hyperplane of the other class
[14]. TWSVM not only maintains the advantages of SVM
but also improves the training speed by 4× [13]. To further
improve the performance of TWSVM and promote its applica-
tion, researchers have proposed various improved algorithms
[13]. For example, the least-squares TWSVM (LSTSVM) is
proposed, whose training process is to solve linear equations
to achieve faster training speed. To meet the needs of large-
scale learning, Ganaie et al. [15] proposed large-scale fuzzy
LSTSVM, which does not involve matrix inversion, and thus
further improves the training speed.

Noise is ubiquitous in real-world learning tasks, which usu-
ally reduces the classification accuracy of the model and makes
the learning task more complex [16], [17]. There are also
several improved TWSVM and SVM methods for processing
noisy data. For example, Tanveer et al. [18] proposed an
intuitionistic fuzzy weighted TWSVM, which can reduce the
influence of outliers and noise. Moslemnejad and Hamidzadeh
[19] applied the belief function theory to the detection of
noise and outliers. Hamidzadeh and Moslemnejad [20] used
confidence function and rough set theory to determine bound-
ary samples and noise. For multiclass data classification,
Moslemnejad and Hamidzadeh [21] proposed weighted SVM
to improve the noise sensitivity. For uncertain data, Liang and
Zhang [22] proposed uncertainty-aware TWSVM, where an
interesting theorem is derived by transforming the multidi-
mensional integrals into 1-D integrals to obtain a simplified
model.
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However, some key issues that still exist in SVM have
not been resolved, such as the choice of hyperparameters
[23]. SVM is very sensitive to hyperparameters, and its
performance depends on the choice of hyperparameters, such
as the bandwidth σ of the Gaussian kernel and the penalty
coefficient C [24]. Therefore, the optimization of hyperparam-
eters in SVM has received a lot of attention [25]. Recently,
with the focus on complex machine learning models with
many hyperparameters [26], the research on hyperparameter
optimization algorithms has regained widespread attention
[27], [28]. Common methods include grid search, random
search, and Bayesian optimization [29]. These algorithms can
be directly used for SVM hyperparameter learning.

When the number of hyperparameters is small, grid search
is a commonly used optimization method [30]. The grid search
method is considered a traditional hyperparameter optimiza-
tion method, which creates models for each combination of
hyperparameters and evaluates their performance on a valida-
tion set. Then, the hyperparameter with the smallest error on
the validation set is regarded as the optimal hyperparameter.
The search range of hyperparameters is generally selected
based on experience or adjusted gradually. Although this
method is very simple, the number of performance evaluations
increases exponentially with the increase in the hyperpa-
rameter dimension [31]. Another problem is that when the
accuracy of SVM is increased, the number of evaluations for
hyperparameters required will be greatly increased [32]. As a
result of these factors, the grid search method is inefficient
and unable to accommodate large-scale data processing.

To address the limitation in grid search, Bergstra and
Bengio [33] proposed a random search method, which usu-
ally can obtain better hyperparameters. This method defines
a marginal distribution for each hyperparameter, and then
randomly selects values to form a set of hyperparameters for
model training and validation. In the grid search, if a hyperpa-
rameter has no effect on the performance of the model, then
the same performance would be obtained even if this hyper-
parameter is set to different values, provided that the other
hyperparameters remain fixed. This leads to many meaningless
performance evaluations; however, the random search method
can avoid this problem [34]. In addition, random search does
not require any assumptions about the learning task. With suf-
ficient computing resources, the random search method can be
infinitely close to the globally optimal solution [35]. Grid and
random search are relatively simple, but neither of them uses
models and historical information. Different from these two
methods, the Bayesian hyperparameter optimization method
uses historical information to approximate the model and
iteratively searches for the optimal hyperparameter [36]. There
are two key components in the iterative process: the surrogate
model and the acquisition function [32]. Surrogate models
are used to fit historical hyperparameters. The acquisition
function uses a probability model to predict the performance
of different candidate hyperparameters [36]. The Bayesian
hyperparameter optimization method has achieved excellent
performance in image classification and speech recognition
based on deep neural networks [36]. However, the Bayesian

hyperparameter optimization method is not always stable,
sometimes the performance is excellent, but sometimes catas-
trophic errors occur on certain tasks [37].

Another important type of hyperparameter learning method
is based on the generalization error gradient, which is used
to guide the optimization of hyperparameters. Different from
black-box model optimization methods such as grid search,
random search, and Bayesian search, this method uses the
gradient information of the hyperparameters, not just the error
information. In practice, the gradient-based hyperparameter
learning method is superior to the black-box model-based
method in terms of performance and speed. The main reason
is that the gradient-based learning method makes full use of
the gradient information of the model [37]. Although grid
search, random search, and Bayesian search methods can all
be used to optimize the hyperparameters of SVM, our research
mainly focuses on gradient-based hyperparameter learning to
minimize the generalization error of SVM.

The SVM generalization error is a function of the minimum
sphere radius and the classification margin in the feature space
[7]. When the feature mapping function (i.e., kernel function
and hyperparameters) is given, the minimum sphere radius
of the sample is fixed. Therefore, SVM can minimize the
generalization error by maximizing the classification margin.
However, the change in hyperparameters will cause the feature
space to change, and the minimum sphere radius is no longer
fixed. Therefore, the influence of the minimum sphere radius
needs to be considered in hyperparameter learning. For exam-
ple, Chapelle et al. [38] used the radius-margin (RM) bound as
the generalization error estimation to guide SVM hyperparam-
eter learning. At present, most SVM hyperparameter learning
is based on RM or its improved algorithm [39]. However,
the RM bound is derived from the Vapnik–Chervonenkis
dimension, considering the worst case in the feature space.
If there are outliers in the sample, it will affect the accuracy
of the generalization error estimation [40].

The motivation of this work is to use the leave-one-out
method to solve hyperparameter learning, probability estima-
tion, and uncertainty measurement of a maximum margin
classifier. Leave-one-out is an unbiased estimation of gen-
eralization error for the regression model, but it cannot be
directly used for generalization error estimation for classifica-
tion. Therefore, we convert the maximum margin classification
problem into a piecewise linear regression task. Different
from the RM methods, we propose a regression-based SVM
(RBSVM) hyperparameter learning method. In the leave-one-
out generalization error estimation, the loss function must
be smooth to calculate its gradient. Therefore, the 0–1 step
loss function in classification needs to be transformed into a
smooth loss function. A common solution is to approximate
the 0–1 step loss function with the sigmoid function g(x) =

(1 + exp(−ax))−1 and then calculate its gradient, as in the
span algorithm [38]. However, the choice of the constant a is
not trivial. If a is too small, the error estimate is not accurate.
If a is too large, the error estimate is not smooth, and the
samples far away from the discriminant hyperplane will lead
to gradient disappearance.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: University of Surrey. Downloaded on December 20,2023 at 21:21:02 UTC from IEEE Xplore.  Restrictions apply. 



PENG et al.: REGRESSION-BASED HYPERPARAMETER LEARNING FOR SUPPORT VECTOR MACHINES 3

The RBSVM algorithm we proposed is a completely dif-
ferent method, which performs generalization error estimation
and hyperparameter learning from a regression perspective.
We formulate the SVM classification task as a piecewise linear
regression task, use the tanh function to approximate this
regression function, and calculate the cross-entropy general-
ization error. Then the hyperparameter learning is performed
according to the cross-entropy generalization error, instead of
calculating the step loss of each sample. In addition, the value
range of the tanh function is [−1, +1], corresponding to the
classification label {−1, +1}, which can be easily converted
into classification probability to measure the uncertainty of the
model.

In summary, the contributions of this article can be summa-
rized as follows.

1) We convert the maximum margin classification problem
into a regression task and propose a new hyperparame-
ter optimization algorithm RBSVM. The cross-entropy
generalization error is applied to SVM generalization
error estimation and hyperparameter learning. Convert-
ing classification tasks into regression tasks provides a
new solution to classification problems, and hyperparam-
eter learning can be considered as its typical application.

2) To achieve an unbiased estimation of the generalization
error using the leave-one-out method, we use the tanh
function to approximate the piecewise linear function,
which is equivalent to the maximum margin classifier,
instead of using the sigmoid function to approximate
the 0–1 step loss function of each sample. The approxi-
mation method aims to make the gradient of the tanh
function at the classification boundary equal to the
gradient of the piecewise linear function. The reason for
choosing this approximation is because the boundary is
crucial to the classification model.

3) We propose to use model entropy to measure the uncer-
tainty of the classification model. The model entropy is
based on the leave-one-out method, which considers the
predicted probability and distribution of all the samples,
not just the support vectors. Thus, it offers advantages
over the classification margin, which is affected by the
regular hyperparameters, does not consider the distribu-
tion of the samples, and thus cannot accurately describe
the uncertainty of the model.

II. RELATED WORK

It is usually expected that a machine learning model (such as
SVM) can select an optimal hyperparameter to minimize the
actual prediction error. However, the actual prediction error
is often not directly measured and can only be estimated
indirectly by calculating the generalization error bound. There-
fore, this section introduces the SVM hyperparameter learning
method and generalization error estimation, such as leave-one-
out error estimation (TLoo), span error estimation (TSpan), and
RM error estimation (TRM) [38].

A. Support Vector Machine

For the given n training samples {(x1, y1), . . . , (xn, yn)},
where x and y are, respectively, the sample and its

corresponding label, SVM maps x to a high-dimensional
feature space through the mapping function 8, and then finds
the linear discriminant function with the largest classification
margin in the feature space f (x) [7]

f (x) = wT 8(x) + b (1)

where w is the weight coefficient, and b is the bias term.
We mainly study the binary-classification task, namely,

yi ∈ {−1, +1}. It is the basic problem of classification tasks,
and multiclassification tasks can be converted into multiple
binary-classification tasks [41]. In a binary-classification task,
if the sample is linearly separable in the feature space, the
parameters w and b of the linear discriminant function f (x)

can be obtained by solving the following convex optimization
problem [7]:

min
w,b

1
2
wT w

s.t. yi (w
T 8(x) + b) ≥ 1 ∀i. (2)

To avoid the dimensionality catastrophe caused by feature
mapping 8(x), the optimization problem (2) is usually not
solved directly. Using the Lagrangian dual method, the above
optimization problem is transformed into a dual problem to
be solved. In duality, the vector inner product is calculated by
the kernel function, that is, k(xi , x j ) = 8(xi )

T 8(x j ). The
duality corresponding to the above original problem (2) is

max
α

n∑
i=1

αi −
1
2

n∑
i, j=1

αiα j yi y j k(xi , x j )

s.t.
n∑

i=1

αi yi = 0, αi ≥ 0 ∀i (3)

where αi is a nonnegative dual variable, and k(., .) is a
specific kernel function. In SVM, the kernel function and its
hyperparameters are very important. The most commonly used
kernel function is the Gaussian kernel kGau, which is defined
as follows:

kGau(xi , x j ) = exp
(

−
||xi − x j ||

2

2σ 2

)
, σ ∈ R+ (4)

where σ is the hyperparameter of the kernel function. The
Gaussian kernel function has good performance and is widely
used in various fields.

If the sample is not linearly separable in the feature space,
slack variables can be introduced to form a soft margin
SVM. There are two types of penalty for slack variables:
L1-norm and L2-norm. For example, the original problem
corresponding to the L2-norm soft margin SVM is

min
w,b

1
2
wT w +

C
2

N∑
i=1

ξ 2
i

s.t. yi (w
T 8(x) + b) ≥ 1 − ξi ∀i (5)

where C is the hyperparameter that penalizes the training
error, and ξi is the slack variable [7]. The corresponding dual
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problem is

max
α

n∑
i=1

αi −
1
2

n∑
i, j=1

αiα j yi y j

(
k(xi , x j ) +

1
C

)

s.t.
n∑

i=1

αi yi = 0, αi ≥ 0 ∀i. (6)

From the comparative analysis of L2-norm soft margin
SVM and hard margin SVM, it can be seen that the soft margin
SVM algorithm with the L2-norm penalty is equivalent to the
hard margin SVM with modified kernel matrix K̃ [38]

K̃ = K +
1
C

I (7)

where K is the kernel matrix corresponding to the kernel
function k(·, ·), I is the identity matrix, and C is the penalty
coefficient of the slack variables. Since the soft margin SVM
can be converted to the hard margin SVM by (7), the derivation
and calculation of the generalization error in this article mainly
focus on the hard margin SVM.

B. RM Generalization Error Estimation

RM generalization error estimation is a very important
error estimation method in SVM. It is derived from the
Vapnik–Chervonenkis dimension by Vapnik [7]. RM gener-
alization error upper bound Trm is

Trm =
1
n

R2

M2 (8)

where M is the maximum classification margin, R is the
minimum sphere radius that contains all the samples in the
feature space, and n is the number of training samples. Later,
Keerthi et al. [42] gave a more accurate estimation. There
is a certain constant c, for which the generalization error
estimation bound of SVM Tsvm holds with the probability
of 1 − δ

Tsvm =
m
n

+

√
c
n

(
R2

M2 log2(n) + log
(

1
δ

))
(9)

where n is the number of samples in the training set, and m is
the number of misclassified samples. If the distribution of the
sample in the feature space is a flat ellipsoid, the corresponding
sphere radius will be very large, which will affect the accurate
estimation of the generalization error. To address this problem,
it is usually necessary to normalize the sample to render a
uniform spherical distribution in the feature space [38].

C. Leave-One-Out Generalization Error Estimate

The leave-one-out method is another generalization error
estimation method, which is an extreme case of K -fold cross-
validation. A test sample is selected from the training set, and
the remaining (n−1) samples are used to train the model. The
model is then used to predict the test sample. Each sample is
selected in turn as a test sample, and the remaining samples
are used to train the model. The average prediction accuracy
of n samples is used as an estimate of model generalization

error, which is an almost unbiased estimate. The definition of
estimated Tloo is as follows [38], [43], [44]:

Tloo =
1
n

n∑
i=1

En−1
i (xi , yi ) =

1
n

n∑
i=1

9
(
−yi f i (xi )

)
(10)

where En−1
i (xi , yi ) is the prediction error of xi by the model

trained after removing the sample xi , and f i (xi ) is its predic-
tion value. 9(x) is a nonsmooth step function, when x > 0,
9(x) = 1, otherwise 9(x) = 0.

The leave-one-out method is a very important generalization
error estimation. However, this method needs to build n
models to predict the reserved single sample, which is very
difficult in practice. Therefore, this method is usually used to
analyze and derive other easy-to-calculate generalization error
estimation bounds [38].

Opper and Winther [45] were inspired by the linear response
theory. Assuming that the set of support vectors does not
change after the i sample is removed, the following formula
holds:

yi ( f 0(xi ) − f i (xi )) =
αi(

K −1
SV

)
i i

(11)

where f 0 is the model obtained by training all the samples,
and KSV is the support vector kernel matrix. Therefore, the
corresponding leave-one-out generalization error estimation
bound is

Tloo ≤
1
n

n∑
i=1

9

(
αi(

K −1
SV

)
i i

− 1

)
. (12)

Later, Chapelle et al. [38] considered the change in the
support vector set caused by removing a single sample and
smoothed the generalization error estimation. Furthermore,
they proposed the span error estimation and gave a geometric
explanation for it.

D. Span Generalization Error Estimation

Span generalization error estimation bound is derived by
Chapelle et al. [38] based on the support vector span. The span
value S2

i of the support vector xi is defined as the distance
between the sample xi and the set 3i in the feature space.
The definition of the set 3i is

3i =

 ∑
j ̸=i,α j ≥0

λ j8(x j ),
∑
j ̸=i

λ j = 1

 (13)

where α j is the dual variable corresponding to the sample x j .
Correspondingly, the estimation bound of span generalization
error is [38]

Tspan =
1
n

n∑
i=1

9(αi S2
i − 1) (14)

where Si is the span value of the sample xi , and 9 is the step
loss function.

Span is a generalization error estimate that is very close to
the leave-one-out method, but the estimate is not continuous
[38]. There are two main reasons for this. One is that the
9 function is a discontinuous step function and needs to be
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approximated by a smooth function. The second is that the
change in the support vector set will cause the noncontinuous
change in 3i . One solution is to penalize the change in 3i to
make it as smooth as possible.

III. REGRESSION-BASED SVM

Since the classification label yi ∈ {−1,+1} is a noncontin-
uous discrete value, its generalization error estimate is usually
also discontinuous. To use the gradient-based hyperparameter
learning method, the generalization error estimate needs to be
smoothed. The common method is to use the sigmoid function
to approximate the 0–1 step loss function.

Different from these existing algorithms, we perform SVM
hyperparameter learning from the perspective of regression
and propose an RBSVM hyperparameter learning algorithm
RBSVM. RBSVM converts the SVM into a piecewise lin-
ear regression problem, and then performs hyperparameter
learning without artificially setting the approximate function
parameters.

A. Regression Equivalent to SVM and Approximation

Nonlinear separable L2-SVM can be converted into linear
separable L2-SVM by modifying the kernel matrix. That
is, through Formulation (7), the soft margin SVM can be
converted into hard margin SVM, so the regression equivalent
analysis of SVM only focuses on hard margin SVM classifica-
tion. L2-SVM can be equivalently converted into a piecewise
linear regression. The analysis and proof are as follows.

Theorem 1: The L2 regularization SVM classification
can be equivalently transformed into a piecewise linear
least-square regression with L2 regularization.

That is, the L2-SVM classification algorithm

min
w,b

1
2
wT w +

C
2

N∑
i=1

ξ 2
i

s.t. yi (w
T 8(x) + b) ≥ 1 − ξi ∀i (15)

can be equivalently converted into least-square regression

min
w,b

1
2
wT w +

C
2

N∑
i=1

(yi − fz(w
T 8(x) + b))2 (16)

where C is the penalty coefficient of the training error, and
fz(·) is the piecewise linear function

fz(t) =


+1, if t > 1
t, if − 1 ≤ t ≤ 1
−1, if t < −1.

(17)

Proof: The theorem can be proved separately according
to the value of wT 8(xi ) + b.

For nonsupport vectors, they are all outside the positive or
negative boundary. When wT 8(xi ) + b > 1, we know that
fz(w

T 8(xi ) + b) = 1. In this case, the label is yi = 1, and it
can be seen that yi − fz(w

T 8(x)+b)) = 0. That is, the square
of the loss in the regression is zero, which is equivalent to the
case of ξi = 0 in L2-SVM.

When wT 8(xi )+b < −1, there is fz(w
T 8(xi )+b) = −1.

At this time, the label is yi = −1, and the squared loss in the

Fig. 1. L2-SVM classification is equivalent to regularized piecewise linear
least-squares regression. The red triangle is the negative class, and the green
diamond is the positive class. The optimal SVM interface is the y-axis (that
is, x = 0). The discriminant function is y = wT x = 0.5 x . The classification
margin is d = 2/||w|| = 4. The margin is equal to the regularization of
the coefficients of the piecewise linear function at the interface, which is
y = 0.5x .

regression is also zero, which is also equivalent to the case of
ξi = 0 in L2-SVM.

For support vectors, these samples are located within or on
the classification boundary. Therefore, when −1 < wT 8(xi )+

b < 1, the squared loss in the regression is (wT 8(xi )+b−yi )
2,

which is equivalent to (yi (w
T 8(xi ) + b) − 1)2 in L2-SVM.

That is the case of ξi ̸= 0 in L2-SVM.
The regular term in piecewise linear regression corresponds

to the classification margin in L2-SVM. Based on the above
discussion, it can be obtained that the L2-SVM classification
is equivalent to the regularized least-squares piecewise linear
regression. The proof is complete.

This theorem provides a new perspective for maximum
margin classification. The generalization error estimation and
uncertainty measurement of the classification task can be
analyzed from the perspective of regression. That is, the non-
support vectors in L2-SVM correspond to samples with zero
squared loss in piecewise linear regression, and the support
vectors correspond to samples with nonzero squared loss in
regression. It should be clarified that L2-SVM is equivalent
to piecewise linear regression without losing the excellent
sparsity properties of SVM. This is because the purpose of
converting L2-SVM into regression is to calculate an unbiased
estimate for the generalization error using the leave-one-out
method. Then, the learning of hyperparameters is implemented
based on this generalization error estimation, whereas the
training of the model still uses the L2-SVM. In other words,
the RBSVM algorithm is for hyperparameter learning rather
than parameter learning. Therefore, after obtaining the optimal
hyperparameters, the L2-SVM model with the hyperparam-
eters can still maintain its sparsity property. The equivalent
regression of L2-SVM can be more intuitively understood
from Fig. 1, where the value of the label y is plus or minus 1,
and the classification margin d is equal to the regularization
of piecewise linear regression.

Although the maximum margin classification can be equiv-
alent to a piecewise linear regression, the piecewise linear
function is not differentiable at the inflection point, and its
gradient cannot be directly calculated for parameter learning.
Therefore, we use the smooth tanh function to approximate the
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Fig. 2. Continuous regression function tanh(0.5x) is used to approximate the
SVM in Fig. 1. It should be noted that this method does not use the sigmoid
function to approximate the 0–1 step loss function, but uses the tanh function
to approximate the SVM model.

piecewise linear function. In this way, on one hand, it is con-
venient to calculate the gradient to optimize the generalization
error. On the other hand, the sample classification probability
can be obtained according to the tanh function so that the
uncertainty of the model is measured (i.e., the model entropy
proposed later in this section). The approximation method is
to make the gradient of the tanh function at the discriminant
intersection (that is, y = 0) equal to the gradient of the
piecewise linear function at this point. The tanh function is

tanh(z) =
ez

− e−z

ez + e−z
.

Its derivative is ∇z tanh(z) = 1 − y2, where y is the corre-
sponding function value. When the independent variable z is
wT x + b, the gradients of the tanh function to w, b are

∇wtanh(wT x + b) = (1 − y2)x
∇b tanh(wT x + b) = (1 − y2). (18)

In the feature space, the function value of SVM at the interface
is 0 (i.e., y = 0), the derivative with respect to w is x, and the
derivative with respect to b is 1. Therefore, the tanh function
approximated to the piecewise function is

g(w, b) = tanh(wT x + b) (19)

where the values of w and b are the coefficients and bias
terms of the SVM, respectively. For example, the tanh function
similar to the SVM in Fig. 1 is g(w, b) = tanh(0.5x), as shown
in Fig. 2.

The purpose of using regression to approximate SVM is
for hyperparameter learning and uncertainty analysis. On one
hand, tanh is a smooth function that facilitates the calculation
of the leave-one-out generalization errors and their gradients.
The leave-one-out method provides an unbiased estimation
of the generalization error, which can accurately reflect the
generalization performance of the model [38], [46]. On the
other hand, the range of the tanh function is [−1, +1],
which can be mapped to the [0, 1] interval to represent the
probability of classification. This makes it easier to analyze
model uncertainty.

B. Generalization Error Estimation of RBSVM

The hyperparameter learning of RBSVM that we propose
here is different from the traditional hyperparameter learning

based on the leave-one-out method. The leave-one-out hyper-
parameter learning method uses leave-one-out to estimate the
generalization error after solving L2-SVM. Then, the sigmoid
function is used to approximate the 0–1 loss function to make
the estimation smooth, and the generalization error gradient is
used to guide hyperparameter learning. The RBSVM algorithm
is different. After obtaining the L2-SVM optimal solution,
RBSVM converts the SVM model into a regression task
equivalently and approximates it with the tanh function. Then,
the gradient of the cross-entropy loss function is used to guide
hyperparameter learning. The generalization error estimation
process of RBSVM is shown in Fig. 3.

It should be noted that after SVM classification is converted
into a regression task, the corresponding 0–1 loss is converted
into a cross-entropy loss, so there is no need to approximate
the 0–1 step loss function. The cross-entropy loss is directly
used to guide the learning of hyperparameters and the analysis
of model uncertainty. That is, traditional L2-SVM classifica-
tion uses hinge loss, so model analysis and hyperparameter
learning need to use 0–1 discontinuous loss function. However,
RBSVM uses regression function to approximate SVM, and
model analysis and hyperparameter learning are processed by
the cross-entropy loss.

When the nonsupport vector (that is, α = 0) is removed
from the training set, it does not affect the optimal solution.
In other words, after the nonsupport vector is removed, it can
still be correctly predicted. Therefore, the estimation of gen-
eralization error only needs to consider the support vector.

For hard margin L2-SVM, all the support vector points (i.e.,
αi ̸= 0) are on the boundary. According to the KKT dual
complementarity condition

αi (yi (w
T xi + b) − 1 + ξi ) = 0 (20)

we can obtain yi (w
T xi + b) − 1 + ξi = 0, that is, wT xi + b +

yiξi = yi . In addition, the following equations can be obtained
according to the KKT conditions:

w =

N∑
j=1

y jα j k(., x j ), ξi =
1
C

αi ,

N∑
j=1

yiαi = 0. (21)

Therefore, the KKT condition can be equivalent to the solution
of the following linear equation:[

H 1
1T 0

]
·

[
α y
b

]
=

[
y
0

]
(22)

where H = K + (1/C)I , and (α y)i = αi ∗ yi .
In leave-one-out, removing nonsupport vectors does not

affect the optimal solution, but removing support vectors will
affect the optimal solution. Therefore, the analysis of the leave-
one-out mainly focuses on the removal of support vectors. For
the convenience of presentation, assume that x1 is the removed
support vector, and α−1 and b−1 represent the optimal solution
of SVM after removing the support vector x1. To analyze the
effect of removing the support vector on the prediction, the
following matrix decomposition can be performed [43]:[

H 1
1T 0

]
=

[
m11 mT

1
m1 M1

]
= M (23)
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Fig. 3. RBSVM generalization error estimation framework. The tanh function is used to approximate the piecewise regression function equivalent to SVM, and
then the leave-one-out method is used to estimate the cross-entropy generalization error. This estimation is used for hyperparameter learning and uncertainty
analysis. In the framework, αi is the optimal solution of L2-SVM, ŷi

−i is the leave-one-out prediction label of sample xi , L(ŷi
−i , yi ) is the leave-one-out

cross-entropy loss, and H−i
i i is the i th element of the main diagonal of the inverse of the extended kernel matrix.

where m11 is the element H11, and M1 is the block matrix after
removing x1. Therefore, the optimal solution after removing
x1 is [

α−1

b−1

]
= M−1

1 [y2, . . . , ym, 0]
T . (24)

Therefore, the prediction for the removed sample x1 is

ŷ−1
1 = mT

1 [α−1 b−1
]
T

= mT
1 M−1

1 α1 + mT
1 [α2, . . . , αn, b]

T . (25)

On the other hand, according to the KKT optimal con-
dition (23), there are y1 = m11α1 + mT

1 [α2, . . . , αn, b]
T .

Combining the above Formulation (25), a relationship can be
established for ŷ−1

1 and y1

ŷ−1
1 = y1 − α1(m11 − mT

1 M−1
1 m1) = y1 −

α1

(H−1)11
(26)

where the last equation is the Woodbury formula (H−1)11 =

m11 − mT
1 M−1

1 m1 [43]. In the derivation process, since the
formula is not sensitive to the sequence number of the sample,
the sample sequence can be perturbed to get the same result.
Therefore, the superscript 1 can be replaced with i , and the
following formula can be obtained [43]:

ŷ−i
i = yi

(
1 −

αi(
H−1

)
i i

)
. (27)

In Formulation (27), the leave-one-out prediction value ŷ−i
i

is discontinuous, and the generalization error estimation based
on this is also discontinuous [38]. To calculate its gradient to
guide hyperparameter learning, it needs to be converted into
a continuous estimation. RBSVM approximates its predicted
value to tanh regression output, and then calculates its leave-
one-out generalization error estimation by cross-entropy. The
approximate tanh output of SVM ỹ−i

i is

ỹ−i
i = tanh

(
ŷ−i

i

)
(28)

where ỹ−i
i and ŷ−i

i have the same gradient at the discrimination
interface.

RBSVM learns the hyperparameters of the model so that
the output of the leave-one-out method approaches the bino-
mial distribution of the real data as much as possible. This
method is similar to but different from maximum likelihood
estimation. The difference between RBSVM and maximum
likelihood estimation is that maximum likelihood estimation
is based on the training set for parameter learning, while
RBSVM uses leave-one-out prediction for model hyperparam-
eter learning instead of parameter learning.

The range of tanh function is [−1, 1], which can be
converted into probability by scaling. Similarly, the sample
label value can also be scaled to the binomial distribution,
and then the cross-entropy loss can be calculated. The leave-
one-out cross-entropy loss is

L
(
yi , ỹ−i

i

)
= −

(
1 + yi

2
log

1 + ỹ−i
i

2
+

1 − yi

2
log

1 − ỹ−i
i

2

)
= −yi ŷ−i

i + log
(
exp

(
ŷ−i

i

)
+ exp

(
−ŷ−i

i

))
= −(1 + yi )ŷ−i

i + log
(
1 + exp

(
2ŷ−i

i

))
(29)

where yi is the sample label, ŷ−i
i is the leave-one-out output

of SVM, and ỹ−i
i is the leave-one-out prediction of RBSVM

ỹ−i
i = tanh

(
ŷ−i

i

)
= tanh

(
yi −

αi yi

(H−1)i i

)
. (30)

RBSVM performs hyperparameter learning by minimizing
the leave-one-out cross-entropy, so it is necessary to calculate
the gradient of the cross-entropy with respect to the hyper-
parameters. The gradient of the cross-entropy loss function
L(yi , ỹ−i

i ) with respect to the hyperparameters is as follows:

∇θ L
(
yi , ỹ−i

i

)
= −∇θ

(
1 + yi

2
log

1 + ỹ−i
i

2
+

1 − yi

2
log

1 − ỹ−i
i

2

)
= ∇θ

(
−yi ŷ−i

i + log
(
exp

(
ŷ−i

i

)
+ exp

(
−ŷ−i

i

)))
= −yi∇θ ŷ−i

i + tanh
(
ŷ−i

i

)
∇θ ŷ−i

i

=
(
ỹ−i

i − yi
)
∇θ ŷ−i

i (31)
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and the gradient of the RBSVM output ỹ−i
i with respect to the

hyperparameters is

∇θ ỹ−i
i =

(
1 −

(
ỹ−i

i

)2
)
∇θ ŷ−i

i . (32)

Then, the objective function of leave-one-out cross-entropy
J (θ) is

J (θ) =

m∑
i=1

L
(
yi , ỹ−i

i

)
= −

m∑
i=1

(
(1 + yi )ŷ−i

i − log
(
1 + exp

(
2ŷ−i

i

)))
(33)

where θ is its hyperparameter (such as θ = {σ, C} for
the Gaussian kernel), and m is the number of samples.
The corresponding gradient formulation with respect to its
hyperparameters is

∇θ J (θ) =

m∑
i=1

∇θ L
(
yi , ỹ−i

i

)
=

m∑
i=1

(
ỹ−i

i − yi
)
∇θ ŷ−i

i (34)

where (ỹ−i
i − yi )∇θ ŷ−i

i is the partial derivative of the
cross-entropy loss function Formulation (29), ỹ−i

i is the leave-
one-out prediction of RBSVM, and yi is the label of sample i .
∇θ ŷ−i

i is the partial derivative of the leave-one-out prediction
with respect to the hyperparameter θ , calculated as follows:

∇ ŷ−i
i = −yi

(
∇αi

(H−1)i i
+ αi

∇ H−1
i i

(H−1)2
i i

)

= −yi

(
−H−1

i i ∇ Hi iαi

(H−1)i i
+ αi

−H−1
i i ∇ Hi i H−1

i i

(H−1)2
i i

)

= yiαi∇ Hi i

(
1 +

1

H−1
i i

)
(35)

where ∇αi = −H−1
i i ∇ Hi iαi , and ∇ H−1

i i = −H−1
∇ Hi i H−1

i i
[43]. H−1

i i is the element i i of H−1, and ∇ Hi i is the partial
derivative of matrix H to the parameter θ .

Substituting Formulation (35) into Formulation (34), we can
get

∇ J (θ) =

m∑
i=1

(
ỹ−i

i − yi
)
∇θ ŷ−i

i

=

m∑
i=1

αi yi
(
ỹ−i

i − yi
)
∇ Hi i

(
1 +

1

H−1
i i

)
. (36)

In Formulation (36), ∇ Hi i depends on the specific kernel
function. For example, in the Gaussian kernel function, the
hyperparameter θ is {σ, C}. The gradients of the extended
kernel matrix H to σ and C are

∇σ Hi j = exp
(

−
||xi − x j ||

2

2σ 2

)(
1
4
||xi − x j ||

2σ−3
)

= Ki j

(
1
4
||xi − x j ||

2σ−3
)

∇C Hi i = −
1

C2 (37)

where K is the kernel matrix. To ensure that the hyperparame-
ters C and σ are nonnegative, let C = exp(ĉ) and σ = exp(σ̂ ).
Therefore, the gradient of H with respect to Ĉ and σ̂ is

∇σ̂ Hi j = Ki j

(
||xi − x j ||

2 exp(σ̂ )

)2

= −2Ki i log(Ki i )

∇ĉ Hi i = − exp(−ĉ).
(38)

C. RBSVM Algorithm

RBSVM is a kind of hyperparameter learning algorithm
based on generalization error gradient. The leave-one-out
cross-entropy generalization error is used to guide hyperpa-
rameter learning. The pseudocode of RBSVM is summarized
in Algorithm 1.

Algorithm 1 RBSVM
Input: Training set {(x1, y1), . . . , (xn, yn)}.
Output: Optimal SVM hyperparameters {σ, C}, and

SVM parameters {α, b}.
Iteration:
1. Initialize {σ, C}, for example σ = 1, C = 0.
2. Obtain the optimal solution of L2-SVM with fixed
hyperparameters {σ, C}.

3. Compute ŷ−i
i and cross-entropy loss according to

(27) and (29).
4. Compute the gradient of cross-entropy with
hyperparameter {σ, C} according to (36) and (37).

5. Update the hyperparameter {σ, C} to minimize
cross-entropy with the gradient descent algorithm.

6. Go back to step 2 or stop when the minimum is
reached.

In Algorithm 1, RBSVM can be solved by the fastest
gradient descent or conjugate gradient descent method, such
as Polack–Ribiere conjugate gradient method [47]. Due to
its simplicity and low memory requirements, the conjugate
gradient method is one of the most commonly used meth-
ods to solve smooth unconstrained optimization problems,
among which Polack–Ribiere method is considered to be very
effective.

D. Uncertainty Analysis and Model Entropy of RBSVM

Uncertainty can be divided into two major types: epistemic
uncertainty and aleatoric uncertainty [48]. Epistemic uncer-
tainty, also known as model uncertainty, is usually the result
of a lack of sufficient data. Aleatoric uncertainty comes from
the data and is caused by the noise of the data. Therefore,
even if more data are obtained, the aleatoric uncertainty does
not decrease. For the classification task, Zhu and Wu [16]
conducted a systematic evaluation of the impact of noise and
summarized some interesting observations. These observations
can help researchers design various noise handling mecha-
nisms to improve data quality. They categorized noise into
class noise and attribute noise and analyzed their properties
and effects separately. For class noise, directly removing
samples containing class noise can generally improve the
classification accuracy. However, it may not be the best
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approach to directly remove samples that contain attribute
noise, because the remaining attributes in these samples may
contain valuable information. The noise on different attributes
has a different impact on model performance. The higher
the correlation between an attribute and a class, the greater
the negative impact of its noise. Therefore, noise processing
mechanisms need to focus more on noise-sensitive attributes
rather than treating them equally [16].

This section mainly discusses the uncertainty of SVM and
proposes model entropy to describe the uncertainty of the
classification model. Although the classification margin of
SVM reflects the structural error, the range of the margin
exceeds the range of [0, 1] and is related to the penalty coeffi-
cient C , which does not directly reflect the uncertainty of the
model. Therefore, we propose the concept of model entropy
to measure the uncertainty of the classification model. The
model entropy is based on the average entropy of the leave-
one-out method. The distribution of training data is used to
approximate the overall distribution to solve the problem that
the classification margin cannot reflect the sample distribution.

The objective of RBSVM is to minimize the cross-entropy
loss between the leave-one-out prediction and the sample label.
The minimization of cross-entropy loss is equivalent to the
minimization of KL divergence, that is, the prediction of
RBSVM is used to approximate the true distribution of the
sample. Therefore, the product of the output of RBSVM and
the sample label are scaled to [0, 1] to form the probability
of ỹ == y. By calculating the prediction probability of
each sample, the model entropy is formed to measure the
uncertainty of the model. Its definition is given as follows.

Definition 1 (Model Entropy): Model entropy is used to
measure the uncertainty of the model in prediction, and its
value range is [0, 1]. The larger the value, the greater the
uncertainty of model prediction. It is defined as

EM = −
1
n

n∑
i=1

[Pyi log(Pyi ) + (1 − Pyi ) log(1 − Pyi )] (39)

where Pyi represents the probability that the prediction of the
i sample is correct. For samples with incorrect predictions, the
probability value is fixed at Pyi = 0.5, and the entropy reaches
the maximum value. If the sample prediction is correct, then

Pyi =

{
(1 + ỹi )/2, if yi = +1
(1 − ỹi )/2, if yi = −1.

(40)

The model entropy is different from the classification mar-
gin of SVM. The difference is mainly manifested in two
aspects: First, the margin of SVM only considers support
vectors and does not consider the distribution of nonsupport
vectors. Second, choosing different regular hyperparameters
will result in different margin, and it is difficult to balance the
impact of training errors and the margin on model uncertainty.
The model entropy is based on the prediction of the leave-
one-out method, not the training error. Therefore, it can better
reflect the actual predictive performance of the model.

Although the classification margin and model entropy are
different, there is a close relationship between them. Generally,
the larger the classification margin, the closer the predicted

TABLE I
EXPERIMENTAL DATA INFORMATION

value ỹ is to the sample label y, and the smaller the model
entropy.

IV. EXPERIMENTS

We analyze and verify the performance of RBSVM from
the aspects of hyperparameter learning and model uncertainty.
The baseline algorithms include grid search, Bayesian, RM,
and span hyperparameter learning.

A. Experimental Datasets and Experimental Settings

The RBSVM algorithm proposed in this article is tested on
16 datasets. The datasets come from the UCI dataset [49] and
LibSVM [50]. Table I lists the detailed information of all the
experimental datasets used in our experiments. For multiclas-
sification data, we used a one-versus-all method to convert it
into binary-classification data. Theory and experiments show
that the one-versus-all strategy is very simple and powerful,
and its results are often at least as accurate as other methods
[41], [51], [52]. For multiclassification data with N classes,
the one-versus-all scheme trains N binary classifiers, and each
classifier takes one of the class samples as positive and the
remaining samples as negative classes. In our experiments,
monks data had three class labels {1, 2, 3}. We take one of the
classes as positive and the remaining two classes as negative.
For example, when the {1} class of monks is positive, the
remaining two classes {2, 3} are treated as negative, which is
denoted by monks-1. The three-classification monks data are
correspondingly decomposed into three two-classification data,
represented as monks-1, monks-2, and monks-3, and then three
binary classifiers are trained. The same one-versus-all method
is applied to another multiclassification dataset balance.

The comparative experiments all use the radial basis kernel
function (RBF). The RBF kernel function, also known as the
Gaussian kernel function, is one of the most commonly used
methods and has many excellent properties. The hyperparame-
ter of RBF is the width parameter σ , which controls the radial
range of the function. Another hyperparameter included in the
experiments is the regularization coefficient C . The platform
used for performing experiments is Dell Precision 7710.

In the experiment, the grid search uses the tenfold
cross-validation method to find the optimal hyperparameters.
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TABLE II
LIST OF OPTIMAL HYPERPARAMETERS. THERE ARE TWO HYPERPARAMETERS, NAMELY, THE GAUSSIAN KERNEL PARAMETER σ AND THE

REGULARIZATION COEFFICIENT C . RBSVM IS THE HYPERPARAMETER LEARNING ALGORITHM PROPOSED IN THIS ARTICLE.
SPANSVM IS HYPERPARAMETER LEARNING BASED ON SPAN MARGIN, AND RMSVM IS RM HYPERPARAMETER LEARNING.

GRIDSEARCH, RANDOMSEARCH, AND BAYESSEARCH ARE GRID SEARCH, RANDOM SEARCH, AND BAYESIAN
HYPERPARAMETER LEARNING, RESPECTIVELY

To find the right hyperparameters, we create a model for each
combination of hyperparameters. The search range for hyper-
parameters log(σ ) and log(C) is [−8, +8] with a step size of
1. Therefore, there are a total of 256 hyperparameter combina-
tions, and 256 models are trained and evaluated accordingly.
Random search uses a random method for hyperparameter
learning. We focus on the random search, that is, independent
draws from a uniform density from the configuration space
[2−8, 28

] for σ and C . Bayesian hyperparameter learning uses
the Hyperopt toolkit [53], which uses tree Parzen estimator
(TPE). Bayesian search uses the same distribution as a random
search, i.e., the distribution is uniform on [2−8, 28

]. The RM
algorithm uses RM for hyperparameter learning [42]. The span
algorithm uses the span margin proposed by Chapelle et al.
[38] for hyperparameter learning.

The choice of the hyperparameter learning algorithm has
great influence on the performance of the model. In the exper-
iment, the grid search and random search used the algorithm
in the scikit-learn library [54]. The hyperparameter learning
algorithm used in RBSVM, RM, and span is a conjugate
gradient descent algorithm implemented by Rasmussen and
Nickisch [47], which uses Polack–Ribiere conjugate gradient
as the search direction.

B. Hyperparameter Learning and Comparative Analysis
The experiment uses the RBF kernel function, and there

are two hyperparameters. One of them is the bandwidth
hyperparameter σ in the RBF kernel function, and the
other hyperparameter is the regularization penalty coefficient
C . The hyperparameters learned by different algorithms on
different datasets are shown in Table II.

It can be seen from Table II that the hyperparameters of
different algorithms are quite different, even though sometimes
the accuracy of the algorithms is very close. The main reason

is that the strategies of different learning algorithms are quite
different.

From the perspective of prediction accuracy, the nonmodel
hyperparameter learning algorithms (grid search, random
search, and Bayesian search) perform similarly, and the
Bayesian algorithm offers the highest accuracy. Grid search
and random search are almost the same. This is mainly because
the redundancy of the hyperparameters σ and C is relatively
small, and the advantages of the random search method are
not significant. It can also be seen that the performance of the
traditional grid search hyperparameter selection algorithm is
stable.

Compared with nonmodel methods, hyperparameter learn-
ing algorithms based on model gradient (RBSVM, SpanSVM,
and RMSVM) have better prediction performance. The main
reason is that gradient-based algorithms can make full use
of model information. In addition, another reason for the low
accuracy of grid search is that the granularity and search range
of grid search are limited.

It can be seen from Table III that among the hyperparameter
learning algorithms, the RBSVM algorithm has the highest
accuracy because it estimates the model generalization error
more accurately. The span algorithm is better than the RM
algorithm. The main reason is that the generalization error
estimation of span is more accurate than that of RM. This is
consistent with the findings in [38].

To further analyze the difference in prediction accuracy
between the models, we use the paired-sample Wilcoxon
signed-rank test to perform the statistical significance test. This
method is a nonparametric test with no assumptions about
the distribution of the sample. The paired-sample Wilcoxon
signed-rank test is used to infer whether there is a difference in
the median of the distribution of two populations from which
the paired samples are drawn. The null hypothesis for this
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TABLE III
COMPARISON AND ANALYSIS OF PREDICTION ACCURACY BETWEEN RBSVM AND OTHER ALGORITHMS. IN THE TABLE, THE ACCURACY

IS THE AVERAGE VALUE OF TENFOLD CROSS-VALIDATION, THE STANDARD DEVIATION IS IN PARENTHESES,
AND THE BOLDFACE IS THE OPTIMAL VALUE

TABLE IV
PAIRED-SAMPLE WILCOXON SIGNED-RANK TEST FOR THE

PREDICTION ACCURACY OF RBSVM WHEN COMPARED WITH
OTHER ALGORITHMS, AND THE SIGNIFICANCE LEVEL IS α = 0.05.

THE TEST RESULTS SHOW THAT THE PREDICTION ACCURACY
OF THE RBSVM ALGORITHM IS SIGNIFICANTLY HIGHER

THAN THAT OF OTHER LEARNING ALGORITHMS

test is that there is no difference in the median of the two
population distributions. The statistical results are shown in
Table IV.

In Table IV, Rank+ represents the sum of positive ranks,
Rank− represents the sum of negative ranks, and Z value−
is calculated based on negative ranks. From the paired-sample
Wilcoxon signed-rank test, the prediction accuracy of RBSVM
is significantly higher than those of other algorithms at the
significance level of 0.05.

C. Analysis of Running Time

To analyze the performance and efficiency (time com-
plexity) of the RBSVM algorithm on large-scale datasets,
we compare and analyze the running time of RBSVM algo-
rithms on datasets with different sizes, as shown in Fig. 4.
The specific method is to perform random sampling with
different sizes on the same dataset, form datasets of different
sizes, and then analyze the running time of the algorithm
on these datasets. The experimental dataset is skin-nonskin,
with random sample sizes increased from 500 to 10 000 with
500 samples at a time. This results in a total of 20 datasets of
different sizes. In the comparison, grid search, random search,
and Bayesian search have a multiplicative running time when
the search scope is increased. Therefore, the search range was
divided into 256 (the search range of σ and C is [−8, +8])

Fig. 4. Run-time comparison between the proposed RBSVM algorithm and
other baseline algorithms.

and 16 (the search range of σ and C is [−2, +2]). The run
time of a group with a search scope of 256 exceeds 5000 s
when the data size is greater than 4000. Therefore, the running
time of the group with a data size greater than 4000 is not
retained in the figure, and only the group with a search size
of 16 is retained as a reference for comparison. The com-
parative experiments were divided into three groups, which
were: 1) gradient-based hyperparameter learning algorithms,
including SpanSVM, RMSVM, and RBSVM; 2) the group
with a search count of 16 (the search range of σ and C is
[−2, 2]), and its hyperparameter learning algorithm using grid
search, random search, and Bayesian search, respectively; and
3) the group with a search count of 256 (the search range of σ

and C is [−8, 8]), and the hyperparameter learning algorithm
also using grid search, random search, and Bayesian search,
respectively.

To obtain reliable comparative experiments, all the SVM
solving algorithms in the hyperparameter learning algorithms
use L2-SVM, and its time complexity is O(n3). There-
fore, as the problem size increases, the run time of all the
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TABLE V
ACCORDING TO THE DEFINITION OF MODEL ENTROPY III.2, THE UNCERTAINTY OF MODELS LEARNED BY DIFFERENT ALGORITHMS IS COMPARED.

IN THE TABLE, BOLDFACE REPRESENTS THE ALGORITHM WITH THE SMALLEST MODEL ENTROPY, AND ITS UNCERTAINTY IS THE LOWEST

TABLE VI
SIGNIFICANCE TESTS FOR RBSVM IN MODEL ENTROPIES USING

THE PAIRED-SAMPLE WILCOXON SIGNED-RANK TEST AT THE
SIGNIFICANCE LEVEL OF 0.05. THE RESULTS SHOW THAT

THE MODEL ENTROPY OF RBSVM IS SIGNIFICANTLY
LOWER THAN THAT OF OTHER ALGORITHMS

hyperparameter learning algorithms increases rapidly. Among
them, the gradient-based hyperparameter learning algorithm
can quickly converge to the optimal solution, its iteration
number is small, and the number of calls to L2-SVM is also
small. Therefore, in practical applications, the gradient-based
algorithms often run less number of iterations than grid search,
random search, and Bayesian search. This observation is
consistent with the literature [37]. The run time of the latter
three algorithms depends on the search scope. For a large
search range, the run time can be increased to multiple times.
For example, in this experiment, the running time of candidate
parameters of 256 (16 × 16, σ and C with a search range
of [−8, 8]) was almost 16× that of candidate parameters of
16 (4 × 4). However, if the search scope is small, we may
not be able to find suitable hyperparameters. In gradient-based
hyperparameter optimization algorithms, the running times of
RMSVM, SpanSVM, and RBSVM are comparable with no
significant differences. Its running time is mainly related to
the number of iterations. Different algorithms have different
optimal solutions for convergence, and the number of iterations
is also different. In general, if the algorithm converges to a
small generalization error, the smaller the test error of its
model, the more iterations it has. Generally, RBSVM and
SpanSVM converge to better hyperparameter solutions than
RMSVM, with slightly more iterations.

Fig. 5. Comparative analysis of model entropy. The parentheses are
(probability, entropy), where the first is the prediction probability, and the
second is the model entropy. The horizontal coordinate is the probability of
correct prediction, and the vertical coordinate is the corresponding model
entropy. In the figure, RBSVM has the lowest model entropy and uncertainty.

D. Uncertainty Analysis of RBSVM

Uncertainty analysis is an important part of the analysis
of machine learning algorithms. This section uses the model
entropy proposed in this article to analyze the uncertainty of
the model learned by different algorithms.

It can be seen from Table V that the uncertainty of the
model learned by different hyperparameter learning algorithms
is quite different. Therefore, we perform a paired-sample
Wilcoxon signed-rank test on the model entropy, and the
results are shown in Table VI. In this table, the meanings
of Rank+, Rank− and P value are the same as in Table IV.
Z value+ is calculated based on positive ranks. It can be seen
that the uncertainty of the model of the RBSVM algorithm is
the lowest at the significance level of 0.05.

To more intuitively reflect the uncertainty of the model
obtained by each hyperparameter learning algorithm, we dis-
play the model entropy and the leave-one-out prediction
probability value on a 2-D graph, as shown in Fig. 5.
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Fig. 6. Prediction distribution of each learning algorithm on the monk dataset. The horizontal coordinate is the cross-validation prediction value of the
sample, and the vertical coordinate is the classification label. The prediction accuracy of RBSVM, SpanSVM, RMSVM, and GridSVM is all 100%, but their
model entropy is different. The prediction distribution of RBSVM is farthest from the origin. RMSVM and GridSVM have one sample whose prediction is
very close to the origin, which is easy to misclassify. RandSVM and BayesSVM have some prediction errors, that is, the prediction of positive sample is less
than 0, and the prediction of negative sample is greater than 0. The closer the prediction of the sample is to the boundary (that is, the origin in this figure), the
easier it is to predict errors and the smaller the model entropy. (a) RBSVM accuracy: 100%, entropy: 0.182. (b) SpanSVM accuracy: 100%, entropy: 0.245.
(c) RMSVM accuracy: 100%, entropy: 0.278. (d) GridSVM accuracy: 100%, entropy: 0.279. (e) RandSVM accuracy: 97.1%, entropy: 0.447. (f) BayesSVM
accuracy: 98.6%, entropy: 0.489.

The horizontal coordinate is the probability value predicted
by the leave-one-out method, and the vertical coordinate is
its corresponding model entropy. It can be seen from the
figure that the model entropy of RBSVM is the smallest. The
entropies of the grid search, random search, and Bayesian
search algorithms are very close. It should be noted that the
probability here is the uncertainty probability corresponding
to the model entropy, not the prediction error.

Model entropy is different from training or prediction error.
Even if the training or prediction error is 0, model entropy can
be used to measure the uncertainty of model. To illustrate this
situation, we use the data monk as an example. The prediction
accuracy of RBSVM, SpanSVM, RMSVM, and grid search
is all 100%, but the uncertainty is different. In Fig. 6, the
vertical coordinate is the classification label. The horizontal
coordinate is the prediction value of the cross-validation. If the
classification is correct and the prediction value is farther
from the origin of the coordinate, the uncertainty is lower.
Although the predictions of RBSVM, SpanSVM, RMSVM,
and grid search are all correct, their classification margin and
model entropy are quite different. This also explains why the
RBSVM algorithm has the highest prediction accuracy in the
comparative experiment.

E. Discussion of Kernel Functions and Hyperparameters

Common kernel functions include linear kernel, polynomial
kernel, and Gaussian kernel functions. The linear kernel func-
tion does not require feature mapping, but instead calculates
the inner product in the original sample space and is then used
to build a linear model. In contrast, the polynomial kernel
allows the learning of nonlinear models by representing the
similarity in a feature space. The degree-d polynomial kernel
function is defined as

k(xi , x j ) =
(
xT

i x j + c
)d

(41)

where xi and x j are samples in the input space, and c is
a constant trading off the influence of higher order versus
lower order terms in the polynomial. The hyperparameter c is
a nonnegative real number whose value is continuous, and the
hyperparameter d is a positive integer whose value is discrete.
The Gaussian kernel function is widely used to map samples
to infinite-dimensional feature spaces on which the models are
built. Its hyperparameter is the bandwidth parameter σ , and its
value is continuous. In addition, there are many other kernel
functions, such as the Laplacian kernel, Spline kernel, and the
Wavelet kernel, to meet the needs of different tasks.

In addition to a single basic kernel function, a new kernel
function can be constructed from a combination of basic kernel
functions. Among them, the Hermite orthogonal polynomial
kernel function proposed by Moghaddam and Hamidzadeh
[55] is an interesting example. The Hermite kernel function
is a combination of Hermite orthogonal polynomials, which
are defined as follows:

Hen = (−1)n exp
(

x2

2

)
dn

dxn
exp

(
−

x2

2

)
(42)

where Hen(x) is an nth-order polynomial for n =

0, 1, 2, 3, . . .. These polynomials are orthogonal to each other.
By combining the Hermite polynomials, the Hermite kernel
function is constructed as follows:

k(xi , x j ) =

m∑
n=0

Hen(xi )Hen(x j ) (43)

where m is the number of polynomials used in the com-
bination, and Hen(xi ) and Hen(x j ) represent the Hermite
polynomials of order n. The Hermite kernel functions can
improve classification accuracy, reduce the number of support
vectors, and increase the speed of SVMs.

In different kernel functions, the number and properties of
their hyperparameters are often different. Hyperparameters can
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be divided into two categories according to their properties.
One type of hyperparameters is continuous, such as the
bandwidth hyperparameter σ in a Gaussian kernel function.
The other type of hyperparameter is discrete, such as order d
in a polynomial kernel function. Hyperparameters of different
properties are often learned in different ways. This article
focuses on the learning of the first type of hyperparameters,
such as the hyperparameter σ in the Gaussian kernel function
and the regularization hyperparameter C . These hyperparam-
eters can be learned using gradient-based algorithms. For the
second type of hyperparameters, such as m in the Hermite
kernel function and d in the polynomial kernel functions,
it is often not straightforward to use the gradient descent
algorithms. Its optimization algorithm can refer to integer
optimization methods or other methods [56].

V. CONCLUSION

In this article, we have presented a new hyperparameter
learning algorithm RBSVM based on a novel idea where
the maximum margin classification problem is transformed
into a regression problem. RBSVM finds the hyperparameters
of the maximum margin classification model by optimizing
the objective function defined on the unbiased generalization
error with a gradient descent algorithm. In addition, we have
proposed a new method for model uncertainty measurement
based on leave-one-out prediction probability.

The experimental analysis and significance test show that
the proposed RBSVM offers significantly higher prediction
accuracy than the baseline algorithms, with lower model
uncertainty. The training time of the RBSVM algorithm is
similar to that of SpanSVM and RMSVM, but less than that
of grid search and Bayesian methods.

The proposed RBSVM algorithm is based on a gradient
descent method, which can only handle continuous hyper-
parameters, but not discrete hyperparameters. In the future,
we intend to use integer optimization algorithms to deal with
the problem of learning with discrete hyperparameters.
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